

Etude des empierrements en sous-fondations Evaluation des performances des matériaux naturels, recyclés et artificiels

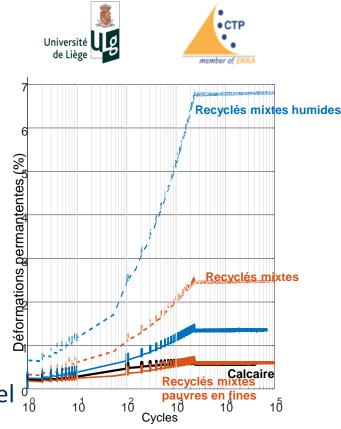
But de l'étude CRR

- Suite au critère de facteur gel/dégel (F) fixé à 2%, l'ensemble des granulats recyclés et artificiels ne répondent pas aux prescriptions imposées dans les marchés de travaux routiers soumis à l'application du CCT Qualiroutes 2017.
 - Un échantillon d/D (8/16 mm) saturé en eau est soumis à 10 cycles chaud/froid (20 °C à -17,5°C) en marquant une pause à 0 °C. Mesure du passant à un tamis d/2 (4 mm) de l'échantillon final
- Contrôler la validité de l'essai de gel/dégel pour des structures routières belges via un programme d'essais validé par le secteur et le SPW M&I en cours au CRR et éventuellement proposer un ou des critères adaptés aux contraintes réellement subies par les granulats.

Projet Aperrout (DG06): CRR - ULg - CTP

Coefficient gel – dégel (F)

■ Recyclés de béton : 4 − 12 %


■ Recyclés mixtes : 10 − 18 %

■ Calcaires : 0,8 – 1 %

■ Grès: 1 − 1,5 %

■ Mâchefers: 4 − 12 %

Pas d'augmentation des déformations permanentes après un conditionnement identique à l'essais gel/dégel

Programme de travail CRR

• Lancer un programme d'essais sur un certain nombre de matériaux granulaires couramment utilisés en sous-fondation:

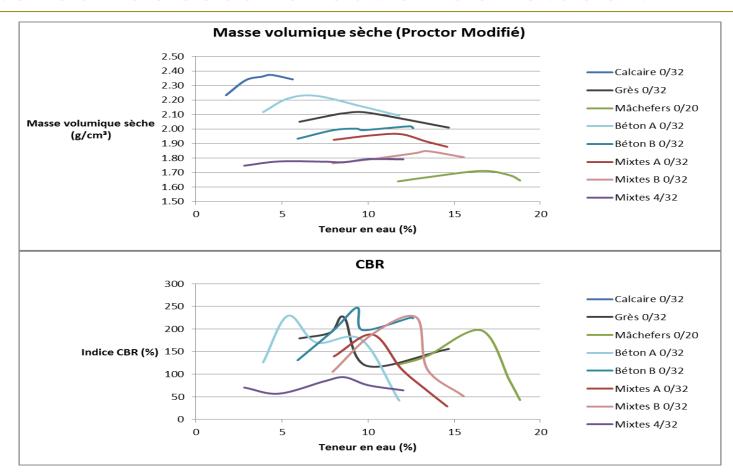
• 2 recyclés mixtes dont les valeurs F mesurées sont compris entre 10 et 12% et la teneur en fines (f) est également comprise entre 10% et 12% + 1 recyclé mixte à teneur en

fines < 7%

2 recyclés de béton

1 mâchefer

- 1 grès
- 1 calcaire



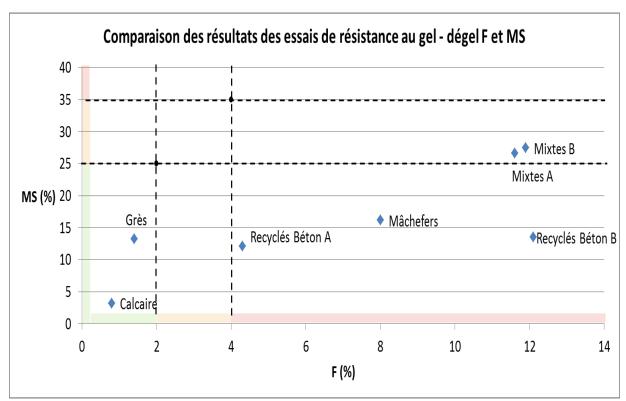
 Contrôle en laboratoire des matériaux: analyse granulométrique (f), gel/dégel (F), valeur au Bleu, études Proctor/CBR, mesure de la déformation permanente par l'essai triaxial cyclique, pilotes de mesure de la perméabilité

Matériaux de sous-fondation de l'étude CRR

	Fines	Essais de durabilité		Gel-dégel
	passant 63 μm (%)	LA (%)	MDE (%)	F (%)
Qualiroutes	< 7	< 40	< 50 (R IIb et III)	< 2 (avant 07/18)
Calcaire 0/32	6,1	18	13	0,8
Grès 0/32	8,8	17	27,5	1,4
Mâchefers 0/20	10,0	37	21,5	8,0
Recyclés de béton 0/32	4,0	27	30,5	4,3
Recyclés de béton 0/63	4,7	36	30	12,0
Recyclés mixtes A 0/32	10,7	38	43,5	11,9
Recyclés mixtes B 0/32	10,3	44	50,5	11,6
Recyclés mixtes f<7%	5,7	36	35	10,3

Matériaux de sous-fondation de l'étude CRR

Gel/dégel: essai au sulfate de magnesium


Tableau B.1 — Catégories de sévérité du gel-dégel en fonction du climat et de l'emploi

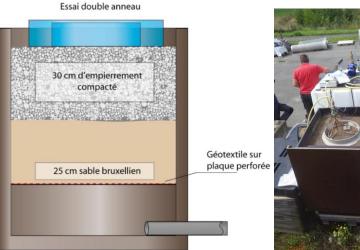
Conditions	Climat		
environnementales	Méditerranéen	Atlantique	Continental a)
Situation sans gel ou sèche	NR	NR	NR
Saturation partielle	NR	F ₄ ou <i>MS</i> ₃₅	F ₂ ou <i>MS</i> ₂₅
Saturé	NR	F ₂ ou <i>MS</i> ₂₅	F ₁ ou <i>MS</i> ₁₈

a) La catégorie «climat continental» pourrait également s'appliquer à l'Islande, certaines parties de la Scandinavie et aux régions montagneuses où les conditions climatiques sont rigoureuses en hiver.

- Qualiroutes propose comme critère $F \le 2\%$, ce qui correspond dans la norme au seuil pour un climat continental en saturation partielle.
- Une utilisation du critère $F \le 4$ %, correspondant à $MS \le 35$ %, pourrait dès lors être envisagée pour la Région Wallonne

Gel/dégel: essai au sulfate de magnesium

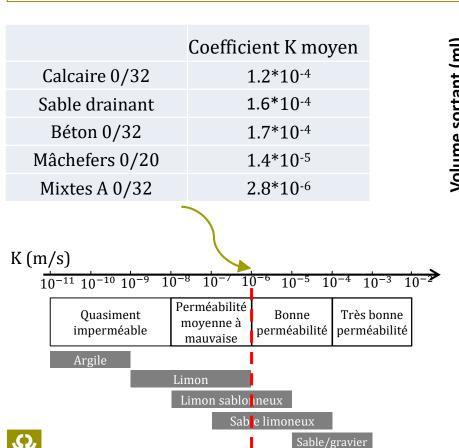
	Valeurs mesurées			
Matériau	MS (%)			
iviateriau	Echantillon	Echantillon	Moyenne	
	1	2		
Calcaire 0/32	2.72	3.60	3.2	
Grès 0/32	16.17	10.20	13.2	
Mâchefers	16.40	15.96	16.2	
0/20				
Mâchefer				
0/20 (autre	15.48	9.90	12.7	
origine)				
Recyclé de	40.50	40.77	40.4	
béton A	10.50	13.77	12.1	
Recyclé de				
béton B	10.65	16.40	13.5	
Recyclé mixte	28.40	26.54	27.5	
A				
Recyclé mixte	27.65	25.45	26.6	
В				

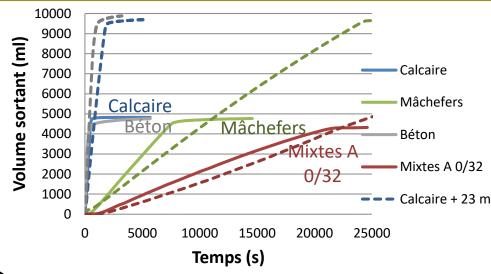

Mesures de la perméabilité

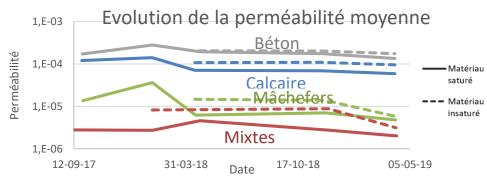
Validation des résultats sur un sable drainant

Essai	Coefficient K (m/s)
Perméamètre de laboratoire	1,95 * 10-4
Essai de perméabilité en colonnes	1,58* 10 ⁻⁴

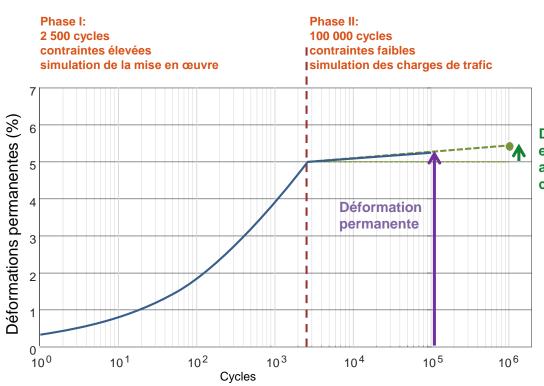
Test en pilote

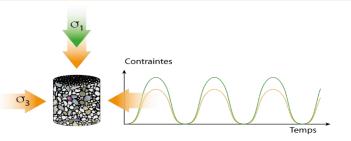




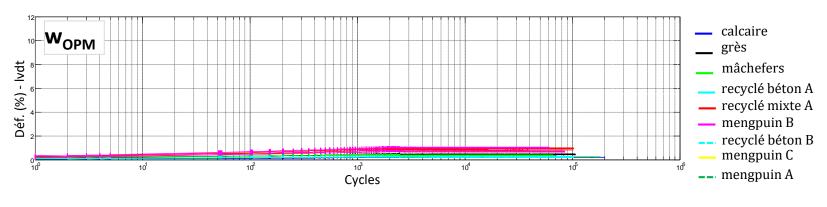

Comparaison des résultats sur le recyclé mixte

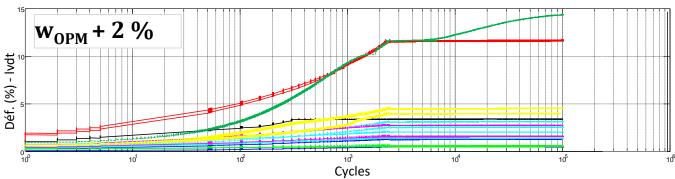
Essai	Coefficient K (m/s)
Essai pilote + double anneau	4,47 * 10-6
Essai de perméabilité en colonnes	2,56 * 10 ⁻⁶


Mesures de la perméabilité: essais en colonnes



Essai triaxial cyclique

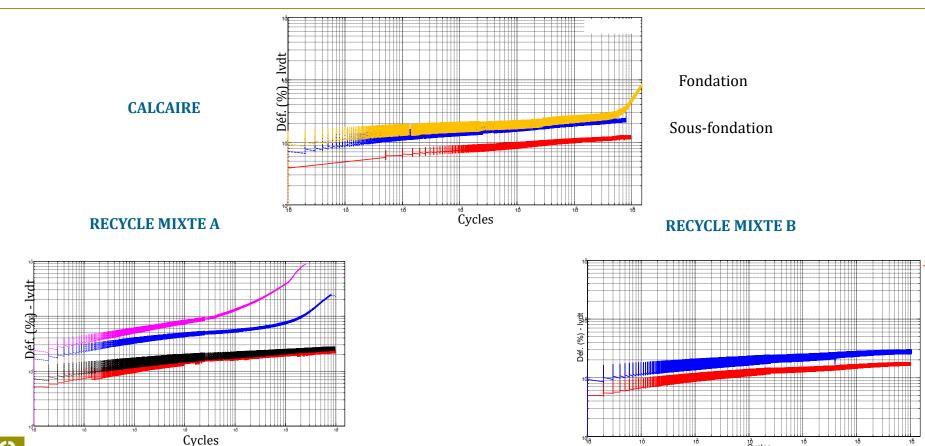



Déformation en service après 10⁶ cycles

Essai triaxial cyclique

Précharge 2500 cycles + 100 000 cycles - contraintes sous-fondations

Essai triaxial cyclique


Déformations permanentes à 100 000 cycles

	< 1 %	1-2%	> 5 %
<u>Wopm</u>	Calcaire		
	Grès		
contraintes sous-	Betonpuin A		
fondations	Recyclé mixte		
	Mengpuin B		
	Mâchefers		
Wopm + 2 %	Calcaire		Mengpuin A
	Grès		
contraintes sous-	Betonpuin (A et		
fondations	B)		
	Mengpuin (B et		
	C)		
	Recyclé mixte		
	Mâchefers		
<u>Wopm + 2 %</u>	Calcaire		Recyclé
contraintes sous-	Mengpuin B		mixte
fondations (200			
cycles précharge)			

Déformations permanentes extrapolées à un million de cycles (comportement après précharge)

	< 1 %	1-5%	> 5 %
Wopm contraintes <u>sous-</u> <u>fondations</u>	Calcaire Grès Betonpuin A Recyclé mixte Mengpuin B Mâchefers		
Wopm + 2 % contraintes sous- fondations	Mâchefers	Calcaire Betonpuin (A et B) Grès Mengpuin (B et C)	Mengpuin A Recyclé mixte Mengpuin B (w=16 %)
Wopm + 2 % contraintes <u>sous-</u> <u>fondations</u> (200 cycles précharge)	Calcaire	Mengpuin B	Recyclé mixte

Essai triaxial cyclique: 1 million de cycles

Conclusions

- Résultats obtenus pour les essais traditionnels concordent bien avec les valeurs attendues sur base des nombreux échantillons testés lors d'études précédentes mais également en comparaison avec les bases de données des producteurs (FEREDECO, COPRO, IPALLE, SUEZ, etc...).
- Les résultats obtenus par les matériaux recyclés et artificiels à l'essai alternatif de mesure de la résistance au gel-dégel (NBN EN 13242 essai au sulfate de magnésium) permettent de classifier différemment ces matériaux par rapport à l'essai de sensibilité repris dans le CCT Qualiroutes leur faisant subir des cycles de gel-dégel.

Conclusions

- Une méthode d'essai a été développée afin de mesurer la perméabilité des matériaux granulaires de sous-fondation. Tous les matériaux testés peuvent être considérés comme perméables mais leur perméabilité varie de façon importante. Ces essais tendent à montrer que cette perméabilité ne diminue pas significativement vingt mois après la mise en œuvre en colonne de test.
- Les recyclés mixtes testés présentent des performances variables et montrent parfois des déformations permanentes importantes à l'essai triaxial cyclique de 100.000 cycles lorsqu'on s'éloigne des conditions de mise en œuvre optimales.

Conclusions

- Les essais de 1.000.000 de cycles à Wopm montrent que pour le calcaire, les recyclés mixtes et les recyclés de béton présentent tous des déformations permanentes acceptables pour une sous-fondation
- L'un des échantillons de recyclés de béton testé au cours de cette étude présente d'excellentes performances à tous les critères, à l'exception du gel-dégel. Le critère gel-dégel était donc le seul frein à l'utilisation de ce matériau de qualité.
- Des essais complémentaires sont encore en cours de réalisation

Merci de votre attention

Le CRR est là **pour vous**!

www.brrc.be

Assistances techniques

assistance@brrc.be

Formations pratiques

